Real-time Identification of Human Finger Electrical impedance for haptic Rendering

Authors: John Gregory, Dr. Yantao Shen and Dr.Ning Xi

Presented for 2010 Inverse Problems Symposium June 6th to 8th, 2010 Michigan State University

Tactile Stimulation Background

Principle of Electronic Tactile Sensing

Two Types of Electro-Tactile Stimulators

Measured using a CCD

Both have been shown to mimic pressure or mechanical stimulation :

Constant Current Driver (CCD) (<u>**popular method**</u>) >Way of neglecting a model of skin electrical impedance (just set current level)

Constant Voltage Driver (CVD) (<u>our preferred method</u>) : Attempt to set voltage pulse waveform at an operating point >Cannot be used in open loop system (cannot control painful or harmful current)

Ultimately the **skin is an obstacle** that must be overcome to stimulate the **axons of the mechanoreceptors** underneath so that they produce an action potential signal to the CNS The Two Classes of Tactile Display Drivers

Non-Inverting OpAmp (Our Driver)

Removal of the S.C to make system appear LTI Invasive because removal of S.C. or use of subcutaneous Implants needed to achieve stimulation

Why Using a CCD is not an optimal approach

Table VI							
Identification of Parameters for 10 different subjects; Dry and Damp Finger Case. Under square wave stimulation							
Operating point held at 75 volts or below sensation threshold							
subject	sex	age	finger condition	Rp (kΩ)	Cp (nF)	Rs (kΩ)	RRSE %
1	М	30	DAMP	20.17	0.845	4.07	0.030
2	М	29	DAMP	44.49	0.379	90.29	0.033
3	М	26	DAMP	65.84	0.445	7.11	0.023
4	М	26	DAMP	23.21	0.847	3.93	0.042
5	М	28	DAMP	12.49	0.201	15.81	0.026
6	F	late 30's	DAMP	14.53	0.165	19.44	0.052
7	М	27	DAMP	16.48	0.160	19.81	0.022
8	F	28	DAMP	38.30	0.291	13.17	0.038
9	М	35	DAMP	30.96	0.344	11.30	0.056
10	М	30's	DAMP	61.89	0.382	8.410	0.020
1	М	30	DRY	194.00	0.165	19.00	0.031
2	М	29	DRY	272.67	0.104	30.45	0.024
3	М	26	DRY	258.19	0.085	38.39	0.032
4	М	26	DRY	195.04	0.012	26.18	0.025
5	М	28	DRY	236.34	0.115	27.55	0.022
6	F	late 30's	DRY	615.58	0.045	69.83	0.062
7	Μ	27	DRY	265.91	0.082	39.54	0.020
8	F	28	DRY	235.55	0.102	31.86	0.030
9	М	35	DRY	271.97	0.140	22.17	0.043
10	M	30's	DRY	258.80	0.075	44.72	0.028

Remarks

Incorporate ease of design and efficiency of CVD introduce and identify parameters of human bioimpedance in real-time to set current levels Key: Blue: largest R_p Red: Smallest R_p Orange: Largest C_p Green: Smallest C_p

Overview: Using CVD with Parameter Identification to set stimulation current intelligently

Future Goal

Model-Based Adaptive Control: use predicted H(s,t) to set V_{in} to match set I_{stim} for user

>H(s,t) is the Q-point-linearized, time varying finger impedance model calculated by iterative extended L.S. (with forgetting factor λ)

>Measurements of $V_{stim}(t)$ and $I_{stim}(t)$ are acquired from tactile interface electrodes to get $\hat{I}_{stim}(t)$

Real-Time Identification of unknown Z-Domain Parameters

Block Diagram of ELS Estimator In Z-Domain

Process Model (Z Domain Conductance Model):

$$\widehat{I}_{stim}(t) = \frac{\beta_2 + \beta_1 z^{-1}}{1 + \alpha_1 z^{-1}} V_{stim}(t) + \frac{c_1}{1 + \alpha_1 z^{-1}} e(t) \quad e(t) \approx \epsilon_p(t) = I_{stim}(t) - \varphi^T (t - 1) \widehat{\theta}(t)$$

>Model consists of ideal first order model of electrical bio-impedance

 $>V_{stim}$ is the input and the calculated I_{stim} is the output of the system

We use the stochastic error correlation coefficient c₁ to model unknown nonlinearities in the ideal 1st order bio-impedance model as correlated noise from previous regressors
•this is needed for stimulation waveforms that have slow rise time compared to square waves

Driving & Measuring the Voltage and Current: First Thread of Execution

Real Time Identification Algorithm: Second Thread of Execution

For, t = 1...k, where k is a subset of the input buffer queue length for storing $V_{\text{meas}}(V_{\text{stim}})$ and $V_{\text{meas}}(I_{\text{stim}})$ $P(t) = \frac{1}{\lambda}P(t-1)[1-\varphi(t-1)\varphi^{T}(t-1)P(t-1)][\lambda + \varphi^{T}(t-1)P(t-1)\varphi(t-1)]^{-1}$ $K(t) = P(t)\varphi(t-1) \qquad \varepsilon_{a}(t) = I_{stim}(t) - \widehat{I}_{stim}(t)$ $\widehat{\Theta}(t) = \widehat{\Theta}(t-1) + K(t)\epsilon_{a}(t)$

MSE goodness of fit criteria

$$E_{n+1}^2 = (\epsilon_{a_{(n)}}^2 + E_n^2 mod(n, N))(mod(n, N) + 1)^{-1}$$

Repeat for $n = j^{k} + 1...(j + 1)^{k}$, for j=1,...(user stop)

Note: forgetting factor weight λ is included in the ELS minimization to account for the time varying $R_{p}(t)$

$$N \approx \frac{2}{1-\lambda}$$

Extracting Physical Model from Z-Domain Model

$$\widehat{Z}_A(t) = \frac{R_s + R_p(t) + R_p(t)R_sC_ps}{1 + R_p(t)C_ps}$$

 $V_{stim} >> e(t) \Rightarrow \frac{1}{\widehat{Z}_D(z)} \approx \frac{I_{stim}}{V_{stim}} = \frac{\beta_2 + \beta_1 z^{-1}}{1 + \alpha_1 z^{-1}}$

We use the Tustin Transform to take the above identified model in to the S domain:

$$z \approx \frac{1 + sT_s/2}{1 - sT_s/2}$$

Assuming:

 no frequency warping from sufficiently high sampling rate.
First corner frequency << zero

$$R_p(t)R_SC_p >> R_p(t)C_p \Rightarrow \omega_c = \frac{1}{R_p(t)C_p}$$
$$w_D << \frac{2}{T_S} \Rightarrow w_D \approx \omega_A$$

The physical bio-Impedance parameters can be Identified:

$$R_s = \frac{1 - \alpha_1}{\beta_2 - \beta_1}$$
$$R_p = \frac{1 + \alpha_1}{\beta_1 + \beta_2} - R_s$$
$$C_p = \frac{T_s}{2} \left(\frac{\beta_2 - \beta_1}{\beta_2 + \beta_1}\right) \frac{1}{R_p(t)}$$

Stimulating Voltage Signal Primitives:

Square Waveform

Configurations :Triangle, Saw Tooth or Square Wave Shape V_{pp} : 50V – 250V Frequency : 50 to 100 Hz Duty Cycle : 5% - 11% Features: Intra-Duty Cycle Modulation

Used for both stimulation and identification

Results: ELS and Convergence (Typical)

Extra-Cellular Resistance: R_n vs. Time; Vpp Stim. = 130 V, λ = 0.9998

Intra-Cellular Resistance: R_e vs. Time; Vpp Stim. = 130 V, λ = 0.9998

Subject: Male, Age: 31, Finger Condition: Dry, Finger Tested: Index; Finger Location: kept const. Test Condition: One-Subject Z_L at 130 Volts; successive measurement (no time lapse); no repeatability testing; const. pressing force;

 Δ time: 0-13 sec. , waveform: square wave, no P.E.,**D.C.** = 11.0%, Freq. = 60 Hz λ = 0.9998, Pressing Force: 700grams

Results: Identified R_p Dynamic Range

I-V DC characteristic with electrical skin impedance

Subject: Male, Age: 31, Finger Condition: Dry, Finger Tested: Index; Finger Location: kept const.
Test Condition: One-Subject Z_L at multiple Q-Points; successive measurement (no time lapse); no repeatability testing; const. pressing force;
Δtime: 3 sec. assumed steady state interval, waveform: all no P.E., D.C. = 11.0%, Freq. = 60 Hz λ = 0.9998,

Pressing Force: 300 grams

Results: Advantage using ELS with slow Stimulation Voltage rise times

Calculated and Measured Current (Output) vs. n; $V_{ppStim} = 50 V$ (left) and VppStim = 169 V (right), $\lambda = 0.9998$

Saw Tooth Wave:

 $\widehat{I}_{stim}(t) = \frac{\beta_2 + \beta_1 z^{-1}}{1 + \alpha_1 z^{-1}} V_{stim}(t) + \frac{c_1}{1 + \alpha_1 z^{-1}} e(t)$

•As driving voltage Increases a notable exponential increase in skin penetration current is observed as a function of quantization level.

•By using the Extended least Squares, the regressor c_1 (error correlation term) characterizes the unknown signal nonlinearities as to enhance tracking at each delta step

Conclusion & Future Work

- •Built versatile CVD, measurement and output current tracking system
- •Plan to develop a feedback loop to set I_{pp} current levels based on identified model
- •Developed high bandwidth current measuring technique
- •Demonstrated ELS algorithm with forgetting factor can track non-linear and time varying current in real-time
- •Future work will use the completed haptic render to investigate mimicking tactile sensation
- •Currently Developing 200 point electro-tactile stimulator using arrays of multiplexed CVDs